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1 Introduction

Modern theoretical approaches to physical human—machine
coordination (pHMC) recognize the importance of sensorimotor
exchanges [1]. That is, when a person and a robot engage in joint
action, the robot’s motor behavior adjusts to the person’s motor beha-
vior simultaneously as the person adjusts to the robot’s motor
behavior. While people are able to smoothly and automatically coor-
dinate their physical actions with one another [2], machine learning
algorithms have difficulty reconciling coadaptation [3].

Furthermore, the influence of robot actions on people is difficult
to capture as people often have different responses to the same robot
actions [4]. We view potential pHMC applications, such as person-
alized wheelchair assistance [5], robotic dance instruction [6], and
collaborative assembly [7], as being embedded within complex
human systems in which the degree of reliance on a robot can
change, given varying situational constraints.

Prior work on physical human—-machine coordination has
explored using sensor data to infer human intention and behaviors.
For example, electromyography signals of the human arm have
been applied to an impedance control framework to improve joint
performance in a human-guided collaborative task [8]. Learning

Contributed by the Mechanisms and Robotics Committee of ASME for publication
in the JOURNAL OF MECHANISMS AND RoBoTICS. Manuscript received March 1, 2019; final
manuscript received July 24, 2019; published online September 3, 2019. Assoc. Editor:
Med Amine Laribi.

Journal of Mechanisms and Robotics

Copyright © 2019 by ASME

methods have also been used on robot motion planning during a
human-robot object transport task [9,10], and game theory frame-
works have been used to adjust the stiffness of a robot during a
co-assembly task [11]. Cognitive systems engineering is a research
area that has established several psychological factors to explain
human performance in complex systems [12]. Yet, studies examin-
ing joint coordination in pHMC typically infer the human partner’s
intention and behavior through impedance or interaction force
[1,13,14], without addressing cognitive factors that can mediate a
person’s intention and behaviors, such as trust.

Trust has been identified as an important factor that guides human
intention and behavior when interacting with automation (including
robots and machines), particularly in situations characterized by
uncertainty [4]. A person’s trust in a machine can be affected by
the machine’s capability [14], their performance disparity [15],
and related factors such as task complexity, multi-tasking require-
ments [16], system complexity, performance saliency, and decisio-
nal freedom [17]. Additionally, cognitive distraction can influence
trust in automation because it can cause a person to overlook automa-
tion performance, although there is conflicting evidence as to how
different distractors influence trust [18,19]. The understanding of
human intention and behavior in pHMC may thus be more refined
by capturing the variability in levels of trust that people have
under various conditions [20]. However, given the difficulty of
unobtrusively measuring continuous trust in a physical task environ-
ment, we believe that human intention and behavior in physical
tasks is best understood through a more measurable concept related
to trust—reliance.
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Reliance and the related concept compliance are important indi-
cators of trust with implications for safety [21]. Automation com-
placency and misuse of machines can emerge as a result of highly
reliable or capable machines, leading to delayed or absent human
responses when intervention is needed [22]. In contrast, it may be
too difficult to observe a machine’s status or predict what it may
do next, leading to disuse. In the current study, we explore how a
machine may measure reliance in real-time pHMC.

1.1 Reliance in Physical Human-Machine Coordination.
As originally defined in the context of discrete responses to
hazard warning systems, reliance describes inaction when a
warning system indicates the system is intact [21]. Reliance is inac-
tion because the operator allows the warning system to provide the
capacity of detecting a hazard. In general, reliance is a behavior that
allows an agent to provide a capacity for task completion. While
definitions of reliance and compliance are conventionally applied
to tasks with discrete responses, the concept may be applied to
joint work in pHMC involving continuous responses. Because a
person’s compliance in this situation can be considered indepen-
dently from reliance actions (e.g., compliance as the act of partici-
pating in the joint task, or responding to a robot’s request), for scope
we will assume compliance and focus on reliance for the remainder
of this paper.

A joint object transport task may involve fixed or dynamic allo-
cation of roles, tasks, and capacities which contextualize reliance
behaviors. In pHMC, overreliance in the robot’s capacity to apply
force may mean the operator is less efficient, may lead to disengage-
ment, or may damage the robot. Task disengagement is a concern
not just for the quality of work and productivity outcomes, it can
also mean a lack of situation awareness needed to notice impending
risks and to input the necessary controls in a timely manner. On the
other hand, if operators under-rely on the robot, they may take on
too much load for themselves, which could lead to injury [23]
and less efficient task completion. Appropriate reliance of an oper-
ator, as measured by interaction force, would reflect the effort
needed to allow the robot to fulfill its intended role in applying
force to the object.

In this task, human intention and behavior are modeled as opti-
mizing a cost function that balances the energy cost of the human
with the tracking error (distance from the current position to the
goal position) [13]. Similar human behavior models have been
introduced in previous work that used optimization frameworks to
explain human motion based on cost functions [14,24-27]. In this
paper, we propose that human intention and behavior in a joint
object transport task can be modeled by minimizing the following
cost function

)€ ) + (1) )
where e(?) is the task tracking error and u(¢) is human effort. This
method, in particular, may be useful for robots to acquire general
information about a person’s intention and behavior based on esti-
mated 4. In Eq. (1), A € R+ is a weighting factor which represents a
person’s intention in interacting with the robot. If a person weights
task completion more heavily than their own energy consumption,
the weighting factor (1) will be relatively low, compared with
people who weight their own effort costs more heavily than task
completion during the interaction. Through this method, we posit
we could summarize a person’s reliance in this specific joint trans-
port task with a single parameter, which can be estimated in
real time.

We posit that physical reliance in a joint object transport task
translates to applying force in a way that utilizes the partner’s capac-
ity to supply force. We model the interaction in a task where a
person must guide the robot (thus, we assume compliance) to vali-
date A’s estimation, which can actively reflect the human’s intention
and behavior in leading the robot, and to establish a baseline for
investigating trust and reliance dynamics. This means that, in the
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current study, reliance is expressed by applying more force to the
object so the robot may support activity with its own force.

To establish our understanding of the relationship between trust,
reliance, and joint physical motion, we control for role allocation by
first considering a situation in which the person is always initiating
and leading the robot, who is sharing the load by following and
matching the force of the person. Due to the known relationship
between trust and reliance, we predict A will explain a significant
amount of variation in trust scores. Therefore, we supplement the
model and interaction force measurements with an additional com-

parison with a validated trust in automation scale [20]. Since 4 esti-
mates reliance by sensing physical properties of the interaction in
real time, changes in task completion time and force should corre-

spond with changes in A. Greater trust scores will be associated with

lower 4 and shorter task completion time. Additionally, we expect

variation in the task over time to affect physical measures and A
as participants become more familiar with the robot. Finally, we
anticipate there will be performance and trust differences when par-
ticipants are distracted.

The main research question and hypotheses in this paper are as
follows:

RQ: Can reliance on interaction force be represented by A in an
optimization framework during a joint object transport
task?

H1: Trust is negatively correlated with A.

Rationale: If trust is negatively correlated with A, then 4 follows

a similar relationship with trust as reliance.

H2: Force, completion time, and 1 will be significantly different
as participants perform progressively complex tasks.

Rationale: As people engage in more complex tasks, they may
plan their motor movements in ways that are more
effortful and less efficient than in simple tasks.
Changes in these physical measures should be
reflected in changes in A.

H3: Performing the transport task while cognitively distracted
will result in slower task completion, less force, greater
trust, and greater A than without distraction.

Rationale: Distracted individuals will divide their attention
between physical and cognitive tasks, which may
result is less efficient task completion. Dividing atten-
tion also means the individual may notice the robot’s
performance less, and thus have a greater (but poten-
tially miscalibrated) trust [19].

2 Experiment Design

To test our hypotheses, this experiment tested four within-
subjects conditions by varying the structure of a joint transport
task between a participant and a robotic manipulator arm. That is,
the first task (Task 1) was a short-range transport task, the second
task (Task 2) was a more challenging long-range transport task,
the third task (Task 3) was a short-range transport task with an
obstacle, and finally, the fourth task (Task 4) was a short-range
transport task that involved two connecting waypoints. Addition-
ally, participants completed one of two between-subjects condi-
tions—a baseline condition and a distraction condition that
included a cognitive distraction task.

2.1 Participant. Thirty-eight participants (10 self-reported as
female, 27 male, and 1 nonbinary) were recruited from Arizona
State University Polytechnic campus through an online course
credit management system, posted flyers, or in-person recruitment.
All participants reported that they had no prior experience working
with manipulator robots, were able to comfortably lift and carry
10 Ibs with their right arm, and were comfortable communicating
in English. To aid in study recruitment, each participant was
entered in a randomized drawing to win one of eight $20 gift
cards to a local coffee shop and awarded research credit if
applicable.
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Five participants were excluded because they displayed extremely
high force and 4 so as to indicate sensor error, had multiple missing
data, or responded as having had prior robot interaction experience in
our post-test survey. Thus, analyses were carried out on data for 33
participants (baseline, n = 17; distraction, n = 16).

2.2 Equipment and Materials. The robot in this experiment
was a manipulator arm (URS, Universal Robots, Denmark). The UR
5 is equipped with a force—torque sensor (FT-300, Robotiq, Quebec,
Canada), which provides the measurement of force and torque
applied on the end-effector. The manipulator ran the force control
mode during the experiment, enabling the robot to follow a partici-
pant’s action by force guidance. A motion capture system (Optitrack,
Natural Point, Corvallis, OR) was also set up to capture the motion
behavior of participants. The physical setup of the equipment relative
to participants is shown in Fig. 1. Instructions for the task were deliv-
ered by researchers using slide presentation software and a script to
explain the task and spatial stimuli in the task environment.

The task environment included a table with a starting point
labeled on one end, a square 1.92 ft from starting point and a
circle 2.36 ft from starting point that represented target waypoints
(see Fig. 2). Different shapes were used to differentiate between
the different tasks. This visual representation of the task was
solely to aid participants in task completion and provided a refer-
ence for communicating instructions. A solid wood block was
used as the obstacle for task 3. The robot was placed across the
table from the participant, clasping another wood block which rep-
resented the object being jointly transported. Surrounding the area
were motion sensors and a desk with a computer for recording
data. For the cognitive distraction task, a randomized list of 20 sen-
tences with basic syntactic structures (10 nonsense and 10 meaning-
ful) were printed on a sheet that contained spaces for the researchers
to track errors. Other distractions (e.g., task-irrelevant activity) were
minimized by conducting the experiment in a windowless room.
Qualtrics was used to record responses to questionnaire data.

Fig. 1

Experimental setup

Obstacle

Start Point Blue Square  Green Circle
o I [ @

Yellow Triangle
X

Fig.2 A graphical view of the task environment with the starting
point (left circle), each waypoint (triangle, square, and right
circle), and the obstacle (rectangle)
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2.3 Procedure. Upon arrival to the study site, and after obtain-
ing written consent, participants were asked to view a series of train-
ing slides. Then, the researcher asked the participant if they had any
questions and if they were ready to continue. The researcher was
able to answer general questions about the task but was not
allowed to interpret the instructions for the participants. For partic-
ipants in the cognitive distraction condition, the researcher would
review two example sentences. Then, the researcher would assist
the participant in putting the motion capture sensors on the partici-
pant’s wrist, elbow, and shoulder. All participants were asked to
complete each of the four joint transport tasks in one practice trial
and four additional trials, once they received a signal from the
robot operator. Each task required the participant to remain standing
in a designated area while gripping the object with the robot with
their right hand. Participants were asked to “help” the robot move
from the starting point to four distinct reference points on a table
in front of them. Researchers read from a script to help guide par-
ticipants in each task, e.g., “Move the object from the start point
to the blue square” for the short-range transport task (Task 1).

The cognitive distraction involved a secondary task in which par-
ticipants listened to a simple sentence (including a subject, a noun,
and a verb) while performing the tasks [28]. After the sentence was
read by the researcher, the participant would respond “yes” or
“no.” Yes, meaning the sentence made sense, or no, meaning the sen-
tence did not make sense, e.g., “The boy brushed his teeth,” (mean-
ingful) or “The ball took a test” (nonsense). Participants would
respond to and recall five sentences per task, for each trial. After
the tasks were completed, participants completed the trust and demo-
graphics questionnaire in a separate room, apart from the researchers
and robot. After they completed the questionnaire, they were com-
pensated class credit if applicable, entered into the drawing, and
thanked for their participation. The motion data were recorded by
the researcher who sat on the left side of the participant throughout
the experiment.

2.4 Measures

Physiological and Task Measures. The human’s interaction
force on the object and computed A are measured every 10 millisec-
onds (ms) and averaged in each task, per participant. The process of
computing 4 will be introduced in Sec. 3. Additionally, participants’
completion time for each task were measured. The distraction task is
considered an auditory-verbal cognitive distraction. To evaluate the
distraction task’s effectiveness, the average number of correct
responses to the sentences was recorded (M =72.9, SD =9.28).

Trust Questionnaire. An empirically validated scale of trust in
automation [20] was used to assess participants’ trust in the robot.
Twelve questions were asked in total, with five questions referring
to a negative or distrusting association (e.g., “The robot is decep-
tive,” “The robot behaves in an underhanded manner”), and the
remaining referring to a positive trust association (e.g., “I am con-
fident in the robot”). A response of 1 would indicate, “Not at all,”
and a response of 7 would indicate “Extremely.” The negative
trust items were reverse-coded prior to analysis (e.g., 1 is coded
as 7). The final responses were summed to create a result ranging
from 54 to 84. Table 2 summarizes the trust responses in the base-
line and distraction conditions.

Participant Demographics. To address potential confounds in
the relationship between trust and physiological measures, demo-
graphic measures of age, height, weight, body mass index (BMI),
gender, native English speaking, multi-tasking tendency, self-
confidence, and handedness (right, left, or ambidextrous) are
included in the analysis. A questionnaire item on self-confidence
was included as well, using a Likert-like scale from 1 for “Not at
all” to 7 “Extremely.” Table 1 summarizes descriptive statistics of
demographics for baseline and distracted groups.
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Table 1 Descriptive statistics of demographics for the baseline
(n=17) and distraction (n=16) groups. For continuous and
ordinal data, we report the mean and standard deviation, and
for categorical data, we report the frequency.

Baseline Distracted

Factor M SD M SD
Age 22.82 3.64 21.69 2.80
Height 69.09 5.88 69.47 4.08
Weight 149.10 24.83 167.27 53.09
BMI 21.71 3.40 23.94 5.34
Self-confidence 5.58 0.87 5.33 0.75

No Yes No Yes
Native English speaker 4 13 7 9
Multitasker 6 6 6 10
Right-handed 1 16 2 14

2.5 Analysis. A Spearman’s correlation test was used to iden-
tify the relationships between A and trust (H1). Then, one-way
ANOVAs with task condition as a repeated measure were used to
evaluate differences in force, completion time, and A in the four
tasks (H2). Finally, the effects of the baseline and distracted condi-
tions on the force, trust, completion time, and 1 were evaluated
using one-way ANOVAs (H3). Bonferroni corrections were
applied to p-values for hypothesis testing involving multiple compar-
isons. Additional post hoc tests with Bonferroni corrections were
used to interpret results. Effect sizes were reported as partial
Eta-squared (%) to describe the degree that our independent vari-
ables (distraction and task condition variables) influenced dependent
variables (trust, force, 1, and completion time). Data were evaluated
using the Statistical Package for the Social Sciences (SPSS).

3 Human Reliance Modeling in a Joint Object
Transport Task

In this section, a model based on interactive motor control is
introduced to provide insight into human intention and behavior
during a joint physical task with a robot arm. We first establish the
model in a one-dimensional case and discuss possible metrics for
cross-participant assessment. Then, our observation of participants’
lateral motion to complete the task, which deviates from a direct
linear goal tracking motion, suggests that an extended model to two-
dimensional cases could be useful. We also present the predicted
average trajectory of a person’s hand motion in the task to validate
the model. By developing an optimal control model, we could sum-
marize reliance as a single number, which we then compare with
trust, acquired from the post-test questionnaire.

3.1 Human Reliance Model Based on Interactive Motor
Control. The human-robot joint object transport task depicted in
this study represents not only a physical connection between a
person and machine but also basic haptic sensorimotor control in
human activities. The motor behavior of the joint action has been
studied and formulated into an optimization framework that
assumes people generate their motion based on balancing task per-
formance and energy consumption (i.e., effort) [24]. A human reli-
ance model would describe intention and behavior, connecting
predisposition, ability, and perception to observable actions. With
the help of the optimization-based motor control model, we can
determine the weighting factor (denoted as 1) estimated from our
measures of human actions in the joint human-robot task.

In the 1D case, we assume that a person would plan their next step
position xf(‘ +1 by optimizing a weighted sum of the goal tracking dis-
tance, which is the distance from the goal position to the current
human hand position, and the energy consumption term, which is
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the product of the interaction force and the distance the human
hand moves. The following optimization problem is defined to
describe the process

min el + A Gprifir) 2a)
Th+1
St epp =Xy — X (2b)
Sea1 =Xy — X (2¢)

where x is the observed robot gripper location at time-step k. The
person’s goal tracking error is e; 1, the action of the person J;,; is
the distance their hand moves within the sample interval, and the inter-

action force is f;.;. Note that an estimated weighting factor ;IZ 41 18
incorporated in the cost function to describe the tradeoff between
reaching the goal faster and consuming more energy. In this model,
a small /12 1 indicates an aggressive goal tracker, because the person
emphasizes the completion of the task more than their own energy
cost, and vice versa. Based on the observed values of e;,1, dxy1,

~h P .
and f;41, we can calculate the 4, (the hat notation indicates that it
is calculated with observed data) with the following equation

B, =argmin  e2,, AL Bepifen) 3)
Xy ER

During the experiment, we recorded observed values and compute
A offline. The data we collected were measured every 10 ms. But the
estimation process of 4 was solved every 50 ms as the sampling period
for human motor control is 30-50 ms [14].

Figure 3 shows the change of 1 in a trial versus the time to com-
plete a trial. The upper subfigure of Fig. 3 demonstrates the displa-
cement of human hand, where the human hand starts around 0.15 m
and reaches the goal position at 0.75 m.

The value of A remains relatively small for most of the time in
region 1, which indicates the participant aims at reaching the goal
quickly. When the participant gets close to the goal, the value of
A increases quickly, which indicates the person tried to slow
down and prepare for approaching the final target area precisely.
In region 2 of Fig. 3, the value of 4 drops suddenly as the participant
realizes that the robot stopped quickly and there is still a significant
distance to the goal, so the human-robot team accelerates a bit.
Another peak of 4 shows up again at the beginning of region 3 of
Fig. 3 for a similar reason, and finally the person adjusts the force
to ensure accurate tracking to the goal, which is a result of the
person weighting the accuracy of goal tracking more heavily than
energy consumption at the end.

08 T
B [|— y| Goal Position
=06 B
€
Q
Eoul ]
3
Foar .
o
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0 5 10 15
Time (s)
1.5 . r
——1-D Case Region 1| Region 2 | Region 3
— — 2-D Case
1k d
~<
05 3
=== e =
0 5 10 15
Time (s)

Fig. 3 Human hand motion and the change of 1 in a trial in one-
dimensional and two-dimensional cases
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3.2 Lateral Motion of the Reaching Task. In the prior
section, the model is defined in one dimension and is capable of
explaining a person’s motion toward the goal position. However,
as our experiment proceeded, we observed that the motion to trans-
port the object was more sophisticated than expected and often
varied from a straight line, even though we set the starting point
and the goal as a straight line. In other words, lateral motion in
an orthogonal y direction was observed, although this lateral
motion did not contribute to the goal tracking parameter.

Figure 4 shows the planar trajectories of five participants from a
bird’s-eye view. Based on the assumption we made, the optimal
solution should be close to participant 5°s trajectory, which is rep-
resented in the upper set of lines that travel almost directly toward
the goal position, while other participants tended to detour from this
more direct route. A possible explanation of the detours is due to the
kinematic property of the robot, which resulted in different stiffness
of moving the robot end-effector from different directions. In other
words, as reflected in the weighting parameters, the trajectory of
participants might have been a result of moving the object in a direc-
tion that was easier, or more comfortable—requiring minimal force
—compared with moving the object in a direct path toward the goal.

3.3 Extend Human Decision Model in 2D. Our observations
suggest that the model we proposed in Sec. 3.2 is not suitable for
explaining lateral motion. The optimization problem is thus
extended to a two-dimensional version

min e}, Persr + (firt 0 8r1)’ Oyt (it 0 Set) ()
k+1

S.t. epr1 =Xg — xfc" (4b)

Skt =Xppy — X (4c)

|lﬁc+loo|| Sfmax (4d)

where Pand 0y, are the coefficient matrices. The goal tracking error
e+ 1, the human action &, 1, and the interaction force f; , ; can be iden-
tified based on kinematic and force measurements. (fi.;°0x41) is the

0.3

Hadamard product of 6y and fi,, which represents a person’s
energy consumption during the interaction.

The coefficient matrices P and Qkﬂ are symmetric and positive
definite. P is chosen to be an identity matrix. We observed partici-
pants’ actions and location, then measured the interaction force
between the person and the robot.

During the experiment, the values of e, 5,1, and fi,; were
measured by the motion capture system and force sensor. Then,
the coefficient matrix Qk+l can be determined as

Qk+1 = argmin 6Z+1Pek+l + (fig1 © 5k+1)TQk+1(fk+l 00kt1)  (3)
Okt

In this case, the weighting factor yields a weighting matrix, Q.
Because our eventual goal was to compare a person’s behavior and
actions in this task with the trust measure, a process that transfers
the weighting matrix to a single scalar was needed. For this
reason, the two-dimensional version of 4 is defined as

~h ~
Aest = 1Qkurl (0)

The ||.|| is the matrix norm operator which calculates the
maximum singular value of the matrix, which yields the
maximum eigenvalue of Qk+1 as the symmetrical property. Thus,
our two-dimensional model result was similar to our 1D model
results in Fig. 3, which indicates that this norm operation still cap-
tures behavior and intention as well as in the one-dimensional case.
The behaviors in the three phases mentioned in the 1D case were
also identified in 2D; the lateral motion of the “detours” resulted
in an increase of A in region 1 of Fig. 3; which suggests that
lateral motion behavior could be captured by the two-dimensional
version of A.

4 Results

Table 2 contains the overall trust scores in the baseline condition
(n=18) and the distraction condition (n=17). In the baseline con-
dition, the overall average trust score was 61.29 (SD =9.6). In the
distraction condition, the overall average trust score was 62.25
(SD =6.05).

Start Point

0.25

02f

Eois |
>
0.1 A
Panicipam1
Participant
0.05 - ) _p 2
Pamczpanta
Participant 4
Participant5
0 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x(m)

Fig. 4 A sample of planar trajectories in the object transport task for five different

participants in task 2, baseline condition
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Table 2 Mean and standard deviation of responses to a posttreatment trust in automation scale [20] for baseline (n=17) and

distraction (n =16) condition

Baseline Distracted
Question M SD M SD
1. The robot is deceptive® 6.00 0.98 5.88 1.28
2. The robot behaves in an underhanded manner® 541 1.83 5.19 1.48
3. I am suspicious of the robot’s intent or action® 5.94 1.22 6.00 1.28
4.1 am wary of the robot” 5.47 1.39 5.56 1.13
5. The robot’s action will have a harmful or injurious outcome® 6.29 0.96 6.06 0.97
6. I am confident in the robot 4.59 1.43 4.75 1.21
7. The robot provides security 4.18 1.39 4.62 1.46
8. The robot has integrity 3.82 1.87 4.62 1.51
9. The robot is dependable 4.82 1.35 4.94 1.04
10. The robot is reliable 5.00 1.34 5.19 0.81
11. I can trust the robot 5.29 0.83 5.31 0.92
12. The robot feels familiar 4.47 1.59 4.12 1.59
Overall score 61.29 9.6 62.25 6.05

“Denotes that the question has been reverse scored.

4.1 Correlation Analysis. There was a significant negative
correlation between trust (M =61.294, SD =9.822) and the optimi-
zation parameter 4. As shown in Fig. 5, the average 1 (M =0.381,
SD=0.296) in Task 2 was negatively correlated with trust (r=
—0.416, p<0.05). These results are consistent with our expectation
that trust can be explained by A rather than interaction force on its
own, or by other measured factors. However, we only observed sig-
nificant results in Task 2. This means that the resulting 4 values cor-
responded to trust only in the long-range task, while in the
short-range, obstacle, and waypoint tasks they did not. Thus, our
first hypothesis is only partly supported by the results.

We also predicted that greater trust would correspond with faster
task completion time, and lower trust will reflect with a slower task
completion time. As expected, there was a significant negative cor-
relation (r=—-0.347, p <0.001) between force and completion time.
This result indicates that as force increased, participants completed
each task faster. However, there was no significant correlation
between completion time or force with trust and A.

4.2 ANOVA Analysis

Task Conditions. Results from the ANOVAs are summarized in
Figs. 6 and 7. Mauchly’s test for sphericity was violated (e =0.713).
Therefore, results with repeated measures are reported with the

Overall Trust Score and Average A

804 o
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0.0 02 0.4 0.6 0.8
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Fig. 5 Trust scores compared with average A for task 2 with no
distraction
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Greenhouse—Geisser correction. There was a significant effect of
task condition on force, (F(2.140, 12.873)=8.034, p<0.001, ;72 =
0.217). Interaction force in the short-range task (Task 1; M=
2.982, SD=0.893) and the long-range task (Task 2; M =3.138,
SD =1.128) was less than the interaction force in the connecting
waypoints task (Task 4; M =4.265, SD =1.106). There was no sig-
nificant effect of task on A or completion time. Overall, this shows
that while interaction force generally increased over successive
trials, 4 and completion time did not.

Distraction Conditions. Condition had a significant effect on
average force (F(2,31)=16.932, p<0.001, ;12 =0.353). Interaction
force was higher without distraction (M =4.014, SD =.786) than
with distraction (M =2.971, SD =0.659). Additionally, completion
time was significantly different between conditions (F(2, 31)=
8.972, n?=0.224. Participants took more time to complete the
task when they were distracted (M =17.5, SD =9.646) than when
they were not (M =9.559, SD =5.002). There was no significant
between-group effect for A or trust, nor was there any significant
interaction. This means that task completion time and interaction
force varied when participants were distracted, but trust and 4 did
not.

In addition to the findings we pursued in light of our hypotheses,
we also observed some interesting behaviors such as a learning
process and the effects of a robot malfunction on our optimization
framework. In this section, we present these results and discuss
related future work.

4.3 Model Application in Different Scenarios

Learning Process of the Participants. Because participants
without prior experience working with robots were recruited for
this study, it was expected that they were not familiar with the spe-
cific kinematic properties of the robot. So, intuitively, participants
would have an initial period when they learned and adapted to
the robot and environment.

Some participants, e.g., participants 3 and 4, differed largely in
their time to complete a trial. As this was the first interaction with
the robot for all participants, some of them may have been cautious
in the earlier trials, which resulted in longer completion time as par-
ticipants adjusted their interaction force and trajectory to the goal. In
contrast, the difference in completion time for participants 4 and 5
was relatively small, which suggests they did not change their way
of interacting with the robot over the course of the experiment. It
was interesting to observe that all five participants’ times fell into
a 5-10-s interval in the final trials of task 1, even though their
initial trial times were very different. By assessing time to
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Fig. 6 Estimated mean interaction force with 95% confidence
intervals for participants across tasks and trials in each
condition

completion of these sequential trials, we can infer that participants
got familiarized with the robot and tasks over time.

Figure 8 shows the average of a normalized A, by trial number, for
five broadly representative participants in Task 1. The normaliza-
tion of 4 in the two-dimensional case is helpful to visualize the
data. As Fig. 8(a) shows, participants who showed a strong learning
process in Fig. 8(b) also had a relatively stronger decaying A, which
might be explained by an increase of trust in the robot as the exper-
iment proceeded.

Effects of Malfunction of the Robot. In Fig. 9, the general
trend of 4 for the participant decreased across trials, except for an
irregular spike in the fourth trial, which indicates at that trial, the
subject was more concerned about the interaction force during the
task. From researcher’s observations, as well as confirmation
from reviewing an experiment video, an emergency stop of the
robot (by the researcher operating the robot) occurred at the end
of the third trial, which was caused by a limit violation of the
robot kinematics. We have excluded this participant’s data from
our statistical analysis, but we find it is an interesting observation
to report separately.
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Fig. 8 (a) Time of task completion in task 1, across the practice
and experimental trials, for five different participants in the base-
line condition. (b) 4 for five different participants in task 1, base-
line condition.
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Fig. 9 Malfunction effects on 4

Figure 9 highlights the sudden increase of 4 in the fourth trial fol-
lowing the robot malfunction, indicating that the participant
changed to a cautious state. After the fourth trial, the subject
might have realized the malfunction was an accident, so the A
decreased again. This observation encourages us to pursue future
work studying the effects of a malfunction during physical
human-robot interaction.
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Fig. 7 Average completion time and average force with 95% confidence intervals for participants in each condition
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5 Discussion

5.1 Research Question and Hypotheses. In this study, we
applied an optimization framework to explain a person’s interaction
force reliance during a human-robot joint object transport task. The
weighting factor A is presented as a parameter to capture human
behavior and intent to share in the effort of the task.

We gleaned three major findings from testing our hypotheses.
First, we observed a significant negative correlation between the
estimated A values in task 2 and the trust post-test scores for the
baseline group, but no similar effects were observed in other
tasks. Although we did not find significance in other tasks, we antic-
ipated this result given that A does not account for changes in beha-
vior as a consequence of the human’s familiarity in the task (task 1,
short-goal), or situational constraints beyond the target (tasks 3,
with an obstacle, and 4, with waypoints). Furthermore, the distrac-
tion condition imposed an attentional constraint on participants,
which added further noise to A’s estimation.

Second, we found in a multivariate analysis that participants’
average interaction forces in tasks 3 and 4 were higher than in
task 1, but completion time and 1 were not significant. This may
be due to the participants familiarizing themselves with the task
over time. Alternatively, the complexity of tasks 3 and 4 may
have required greater force to reach the goal in a relatively
similar time as the other tasks. In either case, these changes did
not reflect in significant changes of A across trials, which also
may be evidence that it is not sensitive to task complexity or famil-
iarity changes.

Finally, there was significantly less interaction force and longer
completion times in the distracted condition compared with the
baseline condition, with no significant difference between groups
for A or trust. For distracted participants, having to balance multiple
tasks seemed to have affected their performance in the joint object
transport task. Interestingly, there were no significant differences in
the post-test trust results between groups, possibly indicating a lack
of sensitivity of subjective post-task measures, compared with an
online measure of behavior and intent. Future work may address
this gap through experimentation with different distractors (e.g.,
visual-spatial), in different joint physical tasks, or possibly by alter-
native subjective measures for trust in physical human—machine
collaboration.

Our research question concerned whether or not interaction force
reliance could be abstracted using A. Overall, our results showed
that A was related to the participant’s trust in simple joint object
transport tasks. This partially confirms our research question.
Since 4 models effort intention using physical parameters alone,
the combination of parameters such as measures of attention or
environmental complexity may be needed to accurately predict reli-
ance in complex systems. In essence, 4 may describe interaction
force reliance to the extent that factors other than the physical inter-
action affect effort tradeoffs.

5.2 Limitations. We acknowledge there are considerable lim-
itations to the generalizability of these findings in real-world
pHMC. Our sample was not able to represent the broader popula-
tion since it mainly consisted of college students who are relatively
well-educated and exposed to technology compared with many
other parts of the world. Additionally, in joint physical activity,
the value of the object and the risk to carry objects would likely
greatly affect trust and reliance. In this study, a 10-g block of
wood was used as the object to transport. However, real-world
applications would likely involve objects that are much heavier
and that could injure the person. Such risks would likely be taken
into account in completing the task, which is not considered in
this study. To evaluate the contribution of our study in real-world
situations, experimentation with A in a variety of situations will
be necessary. The current quadratic form cost function is not effi-
cient enough to capture the human motor behavior comprehen-
sively. A more sophisticated model is suggested to model human
behavior under more complicated tasks rather than moving on a
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plane. Relevant situations to explore in this context include those
characterized by uncertainty and vulnerability (i.e., a trusting situa-
tion) such as pHMC involving a highly valuable payload or highly
interdependent tasks that involve dynamic planning.

Additionally, the sample sizes in the baseline and distracted con-
ditions were slightly imbalanced by one participant. While the addi-
tion of one more participant would completely balance the design
and potentially improve the statistical validity of our results, we
do not anticipate that this would significantly affect the results or
interpretation reported.

5.3 Applications. Interactive robots for physical tasks are
widely needed in myriad work-life situations, from industrial man-
ufacturing to mobility assistance. It is important to distinguish
between the context we used to test A from other possible applica-
tions, such as dynamic role allocation [14]. On one hand, for a sce-
nario in which a person is always leading the robot, applying less
force means that the robot will respond with less force. In this
case, the person is in complete control of the pace of the interaction
as the leader. Thus, the overall efficiency in reaching goal comple-
tion depends primarily on the person’s physical effort. In more
dynamic role allocation, a robot would be able to adjust its force
continuously and maintain the dyad’s efficiency to the goal. Conse-
quently, the human’s response to the alternative motor control
policy may depart from patterns of compliance and reliance
observed in our task. Future work may also consider more
dynamic role allocation using A as a weighting factor, to enable
more cooperative interaction (i.e., role switching).

6 Conclusions

Overall, we were able to show that / is a potential online measure
of interaction force reliance, albeit in simplistic advisory control
interactions. A more diverse and data-driven profile of trust and reli-
ance dynamics may advance the study of pHMC, toward more real-
istic representations of real-world human-robot interactions, as well
as advance the development of robot control algorithms for smooth
reliance adaptation policies. However, as our study and findings
suggest, much work needs to be done before adaptive control
may be realized outside of steady-state interactions. For instance,
machine malfunction may have different effects on trust [17] that
were not investigated here. In this direction, simulating typical as
well as atypical situational constraints may reveal opportunities
for developing control algorithms that enable sustained stability,
adaptation, and appropriate reliance even in unprecedented condi-
tions. Identifying how human dyads overcome challenges in joint
coordination may be another useful approach to advancing
improved interactions. However, we expect there to be differences
in reliance as task interdependency changes.
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